Effect of coadministration of vancomycin and BMP-2 on cocultured Staphylococcus aureus and W-20-17 mouse bone marrow stromal cells in vitro.
نویسندگان
چکیده
In this study, we aimed to establish an in vitro bacterium/bone cell coculture model system and to use this model for dose dependence studies of dual administration of antibiotics and growth factors in vitro. We examined the effect of single or dual administration of the antibiotic vancomycin (VAN) at 0 to 16 μg/ml and bone morphogenetic protein-2 (BMP-2) at 0 or 100 ng/ml on both methicillin-sensitive Staphylococcus aureus and mouse bone marrow stromal cells (W-20-17) under both mono- and coculture conditions. Cell metabolic activity, Live/Dead staining, double-stranded DNA (dsDNA) amounts, and alkaline phosphatase activity were measured to assess cell viability, proliferation, and differentiation. An interleukin-6 (IL-6) enzyme-linked immunosorbent assay (ELISA) kit was used to test the bone cell inflammation response in the presence of bacteria. Our results suggest that, when delivered together in coculture, VAN and BMP-2 maintain their primary functions as an antibiotic and a growth factor, respectively. Most interestingly, this dual-delivery type of approach has shown itself to be effective at lower concentrations of VAN than those required for an approach relying strictly on the antibiotic. It may be that BMP-2 enhances cell proliferation and differentiation before the cells become infected. In coculture, a dosage of VAN higher than that used for treatment in monoculture may be necessary to effectively inhibit growth of Staphylococcus aureus. This could mean that the coculture environment may be limiting the efficacy of VAN, possibly by way of bacterial invasion of the bone cells. This report of a coculture study demonstrates a potential beneficial effect of the coadministration of antibiotics and growth factors compared to treatment with antibiotic alone.
منابع مشابه
CFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells
The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...
متن کاملEffect of co - administration of vancomycin and BMP - 2 on co - 3 cultured Staphylococcus aureus and W - 20 - 17 mouse bone marrow 4 stromal cells in vitro
34 35 In this study, we aim to establish an in vitro bacteria/bone cell co-culture model system and use 36 this model for dose-dependence studies of dual administration of antibiotics and growth factors 37 in vitro. We examined the effect of single or dual administration of the antibiotic vancomycin 38 (VAN) at 0-16 μg/mL and bone morphogenetic protein-2 (BMP-2) at 0-100 ng/mL on both 39 methic...
متن کاملBone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملEffect of daunorubicin drug with and without cimetidine on the nucleated cells of bone marrow of balb/c mouse
Introduction: Hematopoiesis is an on going process mammalian marrow system. A few cells from the nucleated cells of bone marrow are hematopoietic cells which include primary stem cells, precursor cells and progenitor cells. Primary stem cells and progenitor cells are able to produce colonies in culture medium (CFU-C) and irradiated mouse spleen (CFU-S). A hematopoietic cell is alive and act...
متن کاملBone Marrow Stromal Cells with the Granulocyte Colony-Stimulating Factor in the Management of Chemotherapy-Induced Ovarian Failure in a Rat Model
Background: Bone marrow stromal cells (BMSCs), as a type of mesenchymal stem cells, and the granulocyte colony-stimulating factor (G-CSF), as a type of growth factor, may recover damaged ovaries. The aim of the present study was to investigate the effects of the coadministration of BMSCs and the G-CSF on damaged ovaries after creating a chemotherapy model with cyclophosphamide (CTX) in rats.Met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 56 7 شماره
صفحات -
تاریخ انتشار 2012